Isi
- TL; DR (Terlalu Panjang; Tidak Dibaca)
- Margin of Error Dijelaskan
- Menghitung Margin of Error
- Margin of Error untuk Proporsi
Para ilmuwan menggunakan margin kesalahan untuk menghitung seberapa besar estimasi dari penelitian mereka dapat berbeda dari nilai "benar". Ketidakpastian ini mungkin tampak seperti kelemahan sains, tetapi pada kenyataannya, kemampuan untuk secara eksplisit memperkirakan margin kesalahan adalah salah satu kekuatan terbesarnya. Ketidakpastian tidak bisa dihindari, tetapi mengakui bahwa itu ada adalah penting. Anda dapat fokus pada mean untuk berbagai tujuan, tetapi jika Anda ingin untuk menarik kesimpulan tentang perbedaan dalam cara antara populasi yang berbeda, margin of error menjadi sangat penting. Mempelajari cara menghitung margin kesalahan adalah keterampilan penting bagi para ilmuwan di bidang apa pun.
TL; DR (Terlalu Panjang; Tidak Dibaca)
Temukan margin kesalahan dengan mengalikan nilai kritis (z), untuk sampel besar di mana standar deviasi populasi diketahui, atau (t), untuk sampel yang lebih kecil dengan sampel standar deviasi, untuk tingkat kepercayaan yang Anda pilih dengan kesalahan standar atau standar deviasi populasi. Hasil Anda ± hasil ini menentukan taksiran Anda dan margin kesalahannya.
Margin of Error Dijelaskan
Ketika para ilmuwan menghitung rata-rata (yaitu, rata-rata) untuk populasi, mereka mendasarkan ini pada sampel yang diambil dari populasi. Namun, tidak semua sampel mewakili populasi dengan sempurna, sehingga rerata mungkin tidak akurat untuk seluruh populasi. Secara umum, sampel yang lebih besar dan satu set hasil dengan penyebaran yang lebih kecil dari mean membuat perkiraan lebih dapat diandalkan, tapi akan selalu ada beberapa kemungkinan bahwa hasilnya tidak cukup akurat.
Para ilmuwan menggunakan interval kepercayaan untuk menentukan rentang nilai di mana rata-rata yang sebenarnya seharusnya jatuh. Ini biasanya dilakukan pada tingkat kepercayaan 95 persen, tetapi itu bisa dilakukan pada tingkat kepercayaan 90 persen atau 99 persen dalam beberapa kasus. Kisaran nilai antara mean dan tepi selang kepercayaan dikenal sebagai margin of error.
Menghitung Margin of Error
Hitung margin kesalahan menggunakan kesalahan standar atau standar deviasi, ukuran sampel Anda dan "nilai kritis." Jika Anda tahu standar deviasi populasi dan Anda memiliki sampel besar (umumnya dianggap lebih dari 30), Anda dapat menggunakan z-skor untuk tingkat yang Anda pilih kepercayaan dan hanya kalikan ini dengan standar deviasi untuk menemukan margin of error. Jadi untuk kepercayaan 95 persen, z = 1,96, dan margin kesalahan adalah:
Margin of error = 1,96 × standar deviasi populasi
Ini adalah jumlah yang Anda tambahkan ke berarti Anda untuk batas atas dan kurangi dari mean untuk batas bawah margin Anda kesalahan.
Sebagian besar waktu, Anda tidak akan tahu deviasi standar populasi, sehingga Anda harus menggunakan standard error dari mean sebagai gantinya. Dalam hal ini (atau dengan ukuran sampel kecil), Anda menggunakan skor-t sebagai ganti a z-skor. Ikuti langkah-langkah ini untuk menghitung margin kesalahan Anda.
Kurangi 1 dari ukuran sampel Anda untuk menemukan derajat kebebasan Anda. Misalnya, ukuran sampel dari 25 memiliki df = 25-1 = 24 derajat kebebasan. Gunakan tabel t-skor untuk menemukan nilai kritis Anda. Jika Anda ingin interval kepercayaan 95 persen, gunakan kolom berlabel 0,05 di meja untuk dua ekor nilai atau kolom 0,025 di atas meja satu-ekor. Cari nilai yang memotong tingkat kepercayaan diri Anda dan tingkat kebebasan Anda. Dengan df = 24 dan kepercayaan 95 persen, t = 2.064.
Temukan kesalahan standar untuk sampel Anda. Ambil standar deviasi sampel, (s), dan membaginya dengan akar kuadrat dari ukuran sampel Anda, (n). Jadi dalam simbol:
Kesalahan standar = s ÷ √n
Jadi untuk deviasi standar s = 0,5 untuk ukuran sampel n = 25:
Kesalahan standar = 0,5 ÷ √25 = 0,5 ÷ 5 = 0,1
Temukan margin kesalahan dengan mengalikan kesalahan standar Anda dengan nilai kritis Anda:
Margin of error = standard error × t
Dalam contoh:
Margin of error = 0,1 × 2.064 = 0,2064
Ini adalah nilai yang Anda tambahkan ke rata-rata untuk menemukan batas atas untuk margin kesalahan Anda dan kurangi dari rata-rata Anda untuk menemukan batas bawah.
Margin of Error untuk Proporsi
Untuk pertanyaan yang melibatkan proporsi (misalnya, persentase responden survei memberikan jawaban yang spesifik), rumus untuk margin of error sedikit berbeda.
Pertama, menemukan proporsi. Jika Anda mensurvei 500 orang untuk mengetahui berapa banyak yang mendukung kebijakan politik, dan 300 orang melakukannya, Anda membagi 300 dengan 500 untuk menemukan proporsinya, yang sering disebut p-hat (karena simbolnya adalah "p" dengan aksen di atasnya, p̂ ).
p̂ = 300 ÷ 500 = 0,6
Pilih tingkat kepercayaan Anda dan cari nilai (z) yang sesuai. Untuk tingkat kepercayaan 90 persen, ini adalah z = 1,645.
Gunakan rumus di bawah ini untuk menemukan margin kesalahan:
Margin of error = z × √ (p̂ (1 - p̂) ÷ n)
Dengan menggunakan contoh kami, z = 1.645, p̂ = 0.6 dan n = 500, jadi
Margin of error = 1,645 × √ (0,6 (1 - 0.6) ÷ 500)
= 1.645 × √(0.24÷ 500)
= 1.645 × √0.00048
= 0.036
Kalikan dengan 100 untuk mengubahnya menjadi persentase:
Margin of error (%) = 0,036 × 100 = 3,6%
Jadi survei menemukan bahwa 60 persen orang (300 dari 500) mendukung kebijakan dengan margin kesalahan 3,6 persen.