Cara Menghitung Kekuatan Rata-Rata Gelombang Sinus

Posted on
Pengarang: Laura McKinney
Tanggal Pembuatan: 3 April 2021
Tanggal Pembaruan: 17 November 2024
Anonim
Gelombang .07 - Rapat Energi Gelombang
Video: Gelombang .07 - Rapat Energi Gelombang

Isi

Fungsi sinus menggambarkan rasio antara jari-jari lingkaran satuan (atau lingkaran pada bidang Kartesius dengan jari-jari satuan) dan posisi sumbu y dari suatu titik pada lingkaran. Fungsi komplementer adalah cosinus, yang menggambarkan rasio yang sama tetapi untuk posisi sumbu x.

Kekuatan gelombang sinus mengacu pada arus bolak-balik, di mana arus, dan karena itu tegangan, bervariasi dengan waktu seperti gelombang sinus. Terkadang penting untuk menghitung jumlah rata-rata untuk sinyal periodik (atau berulang) seperti arus bolak-balik, saat merancang atau membangun sirkuit.

Apa itu Fungsi Sine

Akan bermanfaat untuk mendefinisikan fungsi sinus, untuk memahami sifat-sifatnya, dan karena itu bagaimana menghitung nilai sinus rata-rata.

Secara umum, fungsi sinus seperti yang didefinisikan, selalu memiliki satuan amplitudo, periode 2π, dan tanpa fase offset. Seperti yang disebutkan, ini adalah rasio antara jari-jari, R, dan posisi sumbu y, y, dari suatu titik pada lingkaran jari-jari R. Karena alasan itu, amplitudo didefinisikan untuk lingkaran satuan, tetapi dapat diskalakan dengan R sesuai kebutuhan.

Offset fase akan menggambarkan beberapa sudut menjauh dari sumbu x, di mana "titik awal" baru dari lingkaran telah bergeser ke. Meskipun ini mungkin berguna untuk beberapa masalah, itu tidak menyesuaikan amplitudo rata-rata, atau kekuatan fungsi sinus.

Menghitung Nilai Rata-Rata

Ingat bahwa untuk rangkaian persamaan untuk daya adalah, P = I V, dimana V adalah tegangan dan saya adalah arus. Karena V = I R, untuk sirkuit dengan resistansi R, kita sekarang tahu itu P = I2R.

Pertama, pertimbangkan arus yang bervariasi waktu Saya t) dari bentuk Saya t)= _I0_sin (ωt) . Arus memiliki amplitudo saya0, dan periode 2π / ω. Jika resistan pada rangkaian diketahui R, maka kekuatan sebagai fungsi waktu adalah P (t) = I02R dosa2(* t).

Untuk menghitung daya rata-rata, perlu untuk mengikuti prosedur umum untuk rata-rata: daya total pada setiap instan dalam periode bunga, dibagi dengan periode waktu, T.

Oleh karena itu, langkah kedua adalah mengintegrasikan P (t) selama periode penuh.

Integral dari I02Rsin2(ωt) selama periode T diberikan oleh:

frac {I_0 R (T - Cos (2 pi) Dosa (2 pi) / omega)} {2} = frac {I_0RT} {2}

Maka rata-rata adalah kekuatan integral, atau total, dibagi dengan periode T:

frac {I_0 R} {2}

Mungkin berguna untuk mengetahui bahwa nilai rata-rata fungsi sinus kuadrat selama periode tersebut selalu 1/2. Mengingat fakta ini dapat membantu menghitung perkiraan cepat.

Cara Menghitung Daya Root Mean Square

Sama seperti prosedur untuk menghitung nilai rata-rata, root mean square adalah kuantitas lain yang bermanfaat. Ini dihitung (hampir) persis seperti namanya: Ambil jumlah bunga, kuadratkan, hitung rata-rata (atau rata-rata) dan kemudian ambil akar kuadrat. Kuantitas ini sering disingkat RMS.

Jadi apa nilai RMS dari gelombang sinus? Sama seperti yang dilakukan sebelumnya, kita tahu bahwa nilai rata-rata gelombang sinus kuadrat adalah 1/2. Jika kita mengambil akar kuadrat dari 1/2, kita dapat menentukan bahwa nilai RMS dari gelombang sinus adalah sekitar 0,707.

Seringkali dalam desain sirkuit, arus atau tegangan RMS diperlukan serta rata-rata. Cara tercepat untuk menentukan ini adalah untuk menentukan arus puncak atau tegangan (atau nilai maksimum gelombang), dan kemudian kalikan nilai puncaknya dengan 1/2 jika Anda membutuhkan rata-rata, atau 0,707 jika Anda memerlukan nilai RMS.