Penggunaan Polinomial Setiap Hari

Posted on
Pengarang: Louise Ward
Tanggal Pembuatan: 3 Februari 2021
Tanggal Pembaruan: 20 November 2024
Anonim
Penerapan Polinomial dalam Kehidupan Sehari-hari || Matematika Peminatan
Video: Penerapan Polinomial dalam Kehidupan Sehari-hari || Matematika Peminatan

Isi

Polinomial tidak serumit kedengarannya, karena itu hanya ekspresi aljabar dengan beberapa istilah. Biasanya, polinomial memiliki lebih dari satu istilah, dan setiap istilah dapat berupa variabel, angka atau kombinasi variabel dan angka. Beberapa orang menggunakan polinomial di kepala mereka setiap hari tanpa menyadarinya, sementara yang lain melakukannya dengan lebih sadar.

Pengecualian Polinomial

Banyak ekspresi aljabar adalah polinomial, tetapi tidak semuanya. Sementara polinomial dapat menyertakan konstanta seperti 3, -4 atau 1/2, variabel, yang sering dilambangkan dengan huruf, dan eksponen, ada dua hal yang tidak bisa dimasukkan oleh polinomial. Yang pertama adalah pembagian oleh variabel, jadi ekspresi yang berisi istilah seperti 7 / y bukanlah polinomial. Elemen terlarang kedua adalah eksponen negatif karena ia berjumlah pembagian oleh variabel. 7 tahun-2 = 7 / y2.

Berikut adalah beberapa contoh polinomial:

Polinomial di Supermarket

Anda mungkin menggunakan polinomial di kepala Anda lebih dari sekali saat berbelanja. Misalnya, Anda mungkin ingin tahu berapa harga tiga pon tepung, dua lusin telur dan tiga liter susu. Sebelum Anda memeriksa harga, buat polinomial sederhana, biarkan "f" menunjukkan harga tepung, "e" menunjukkan harga selusin telur dan "m" harga satu liter susu. Ini terlihat seperti ini: 3f + 2e + 3m.

Ekspresi aljabar dasar ini sekarang siap untuk Anda memasukkan harga. Jika tepung harganya $ 4,49, telur berharga $ 3,59 lusin dan susu harganya $ 1,79 per liter, Anda akan dikenai biaya 3 (4,49) + 2 (3,59) + 3 (1,79) = $ 26,02 saat checkout, ditambah pajak.

Orang yang Menggunakan Polinomial

Di antara para profesional karier, yang paling mungkin menggunakan polinomial setiap hari adalah mereka yang perlu membuat perhitungan yang rumit. Misalnya, seorang insinyur yang merancang roller coaster akan menggunakan polinomial untuk memodelkan kurva, sedangkan insinyur sipil akan menggunakan polinomial untuk merancang jalan, bangunan, dan struktur lainnya. Polinomial juga merupakan alat penting dalam menggambarkan dan memprediksi pola lalu lintas sehingga tindakan pengendalian lalu lintas yang tepat, seperti lampu lalu lintas, dapat diimplementasikan. Ekonom menggunakan polinomial untuk memodelkan pola pertumbuhan ekonomi, dan peneliti medis menggunakannya untuk menggambarkan perilaku koloni bakteri.

Bahkan seorang sopir taksi dapat mengambil manfaat dari penggunaan polinomial. Misalkan seorang pengemudi ingin tahu berapa mil ia harus mengemudi untuk mendapatkan $ 100. Jika meteran menagih pelanggan tarif $ 1,50 mil dan pengemudi mendapat setengah dari itu, ini dapat ditulis dalam bentuk polinomial sebagai 1/2 ($ 1,50) x. Mengizinkan polinomial ini setara dengan $ 100 dan penyelesaian untuk x menghasilkan jawabannya: 133,33 mil.

Aritmatika Polinomial

Polinomial lebih mudah digunakan jika Anda mengekspresikannya dalam bentuk paling sederhana. Anda dapat menambah, mengurangi dan mengalikan istilah dalam polinomial seperti halnya Anda menghitung angka, tetapi dengan satu peringatan: Anda hanya dapat menambah dan mengurangi istilah seperti. Sebagai contoh: x2 + 3x2 = 4x2, tetapi x + x2 tidak dapat ditulis dalam bentuk yang lebih sederhana. Saat Anda mengalikan istilah dalam tanda kurung, seperti (x + y +1) dengan istilah di luar tanda kurung, Anda mengalikan semua istilah dalam tanda kurung dengan tanda eksternal.

y2 (x + y + 1) = xy2 + y3 + y2.

Rendering ini dalam notasi standar dengan eksponen tertinggi pertama dan anjak piutang, itu menjadi:

y3 + (x + 1) y2

Jika kedua istilah dalam tanda kurung, Anda mengalikan setiap istilah di dalam braket pertama dengan masing-masing istilah di yang kedua.

(y2 +1) (x - 2y) = xy2 + x - 2thn3 - 2y

Rendering ini dalam notasi standar, itu menjadi:

-2y3 + xy2 + x - 2thn